
Application Note: QCI-AN080 QuickSilver Controls, Inc.
Date: 21 September 2018 www.QuickSilverControls.com

Property of QuickSilver Controls, Inc. Page 1 of 6 This document is subject to change without notice.
QuickControl® and QCI® are Registered Trademarks of QuickSilver Controls, Inc.
SilverLode™, SilverNugget™, SilverDust™, PVIA™, QuickSilver Controls™, and AntiHunt™ are trademarks of
QuickSilver Controls, Inc..

Using CrystalFontz CFA533-KC as an HMI

Associated Files:

QuickSilver Controls has implemented an I2C interface which uses IO2 and IO3 on our X-
Series SilverNuggets and SilverMax units. This allows for data display and interaction with the
operator via a keyboard. The display and keyboard are easily accessed using subroutines in
the QCP example

This example is using a Crystalfontz series of I2C displays with entry pads.
https://www.crystalfontz.com/product/cfa533tfhkc-16x2-i2c-lcd-display
They also have several I2C displays only, as well as larger displays. This particular unit is
approximately $50 at quantity one, from their web site (as of the writing of this application note)
They also carry bezels and have cad drawing for the display and keyboard bezels.

Electronic Interface

The I2C interface connections are made through a 10 pin header on the back side of the
display:

Signal Name CF 10 Pin connector X-series Signal

V+ (3.3-5v) Pin 7 +5v

GND Pin 9 Logic Ground

SDA (Data) Pin 3 IO2

SCL (Clock) Pin 5 IO3

Note: The internal programmable pullups in the X-Series controllers are automatically turned
on when the I2C mode is configured, providing the required pullup resistors without additional
hardware.

https://www.crystalfontz.com/product/cfa533tfhkc-16x2-i2c-lcd-display

Application Note: QCI-AN080 QuickSilver Controls, Inc.

QuickSilver Controls, Inc. Page 2 of 6

The display also has 4 additional I/O available through J8 connector. Some of these have
options set by jumpers or resistors. See the data sheet for details. Contact Crystalfontz to have
these configured, including having connectors installed.

I2C COMMANDS
Three new modes have been added to the SET MODE (SMD) command. The Send and Read
back commands are specific to the CrystalFontz I2C communications protocol as the Send
command appends two CRC bytes to the data stream, while the Read function verifies the
received CRC values received from the display.

SMD [28] Enable I2C on IO2(SDAA) and IO3(SCLA), set the I2C address of display. The
address is 7 bits (the 8th bit is a RD/WR* bit)
SMD [29] Send to I2C from buffer address. The first register holds the Command byte in the
high word, and the byte count of the data portion in the low word. Any data must be placed in
the following registers, again high word, then low word of successive registers. If only one byte
is used in a register, it must be the high word. The CRC is automatically calculated and sent
after the data. Note, the transaction is not closed by the send command, allowing a following
read back command to be used, either to verify the sent command or to read information back
from the display (such as keyboard information). The maximum size of the transaction is 32
bytes (not including the CRC).
SMD [30) Read Back from I2C to buffer address. The data read is returned to the buffer, with
the number of bytes determined by the byte count from the display. CRC is automatically
checked. A maximum of 32 bytes (not including the CRC) may be returned in a transaction (16
registers), although most commands do not return that much information.

The Enable I2C command should begin each transaction. The enable command is configured
to send a long stop (9 clocks) to clear any existing state. A minimum of 1ms should follow the
Enable command to allow it to finish before any new command is issued. (Register 64039 can
also be checked – done with controller processing if register 64039=0). A minimum 6 ms delay
should follow each Send or Read command to the I2C to allow the command to be sent and
for the display to process the command before the next read or write command is sent. See
the CrystalFontz manual for details, as some commands require longer times to complete.

Next the wanted command, byte count, and any data need to be written to the registers which
will be used as the transmit buffer. The Send to I2C command is used to send these to the
display. Again, the appropriate wait time for the command (most are 5ms) needs to be waited
for the display to process the command before any new command is sent or the results of the
just sent command are read back.

If the command is sending long blocks of data, additional time may be needed. Each byte (sent
at 50kHz clock rate) takes approximately 180uS, and the packed must include command,
count, data, and 2 bytes of CRC.

The status of the command sent (from the controller’s view) may be verified by looking at
registers 64038 and 64039 (details below). Additionally, optionally, the command results from
the display may be queried by use of the Read Back command. In the case of a query
command (read keypad, read memory, etc.), the Read Back command must be used to
retrieve the queried data.

Application Note: QCI-AN080 QuickSilver Controls, Inc.

QuickSilver Controls, Inc. Page 3 of 6

The Enable command should be sent prior to the next Send command. A 1ms delay should be
sufficient for the enable command to complete.

Register 64039 holds the I2C internal state (1=enable, 2=write, 3=readback) in the upper word,
and the substate in the lower word. Value of 0 (both words) means the I2C state machine has
completed its current operation.
Register 64038 holds status bits:
Bit 0 = success
Errors: Bit 15 set plus:
Bit 1 = bad receive (data size too big for buffer)
Bit 2 = bad CRC received
Bit 3 = illegal state detected in state machine (should never occur)

Checking these status bits is optional as long as sufficient time is provided for the transaction.
(Checking status bits and optionally the Read Back for each command may help detect and
diagnose errors in communications to the display).

POWER UP STATE OF DISPLAY
The display has its own non-volatile memory which includes IO configuration (4 IO lines),
display data, user defined special character data, cursor type and location, and several other
options. (See CrystalFontz Manual). The current configuration may be saved with command 4.
(Note this can take up to 50ms, and the display should be operating at 5v to ensure success.)
The standard display, as shipped has CrystalFontz banner and revision showing. Use
command 6 to clear display and then write any startup message you may want before saving
the power up state.

LIGHTS
The LEDs on for the display and keyboard are independent and can be set to 0..100%. It is
suggested to only illuminate the keyboard when an input is being requested, but that is entirely
up to your choice. (See command 14 - 0x0E)

KEYPAD
The keypad is scanned in the background by the display. There are a couple of optional
modes that can generate IO either on a key push, or on a particular combination or holding of
buttons (i.e. pulse one of the onboard IO if the exit (x) button is kept pushed for 4 seconds);
see the display manual for details. The standard use is to poll the keyboard results using the
Read Keypad 24 – 0x18 command. This returns 3 bytes, the currently pressed, pressed since
last read keypad command, and the buttons released since last read keypad command. These
are mapped below. Each button reports its status as a separate bit in the three bytes returned.

Bit0 (0x01) = Up
Bit1 (0x02) = enter (check mark)
Bit2 (0x04) = Cancel (X button)
Bit3 (0x08) = Left
Bit4 (0x10) = Right
Bit5 (0x20) = Down

Application Note: QCI-AN080 QuickSilver Controls, Inc.

QuickSilver Controls, Inc. Page 4 of 6

EXAMPLES

Clear I2C Display.qcp
This routine will clear the display to all
blanks. (Note, if you have a cursor set, that
must be cleared separately by setting cursor
type to 0).

First we set the address and initialize the
I2C interface. Next we set the command and
data length for the Clear Display command:
Command 6, data length 0. Finally we send
the command using the SMD 29 command
with the same register to which we wrote the
command and data length. The appropriate
delays are inserted between commands.

Application Note: QCI-AN080 QuickSilver Controls, Inc.

QuickSilver Controls, Inc. Page 5 of 6

Test Write 4.qcp

This program writes 4
characters “Test” to column 4,
row 1 as an example.

First we clear the I2C state
machine.
We then assemble command
31 (0x1F), with 6 bytes of data:
Column, Row
“Test”
We write the command to the
display, and then complete the
bus cycle by initializing the I2C
bus

Application Note: QCI-AN080 QuickSilver Controls, Inc.

QuickSilver Controls, Inc. Page 6 of 6

ADDITIONAL EXAMPLES

Additional qcp example files are included in the zip file.

Set Startup Screen.qcp
This program (configured to be run-only as that is how it would likely be used) will clear the
screen, set only the screen LED as lit, turn off the cursor, and set a greeting line on the top
line of the display, in this example “QuickSilver”. It will then save this as the default startup
screen for the display when power is applied to the display.

Set Greeting edit number.qcp
This program is written with various operations as subroutines to move the bulk of the
operations out of the main routine. It clears the display and writes “QuickSilver” to the top line,
and then displays a number on the lower line. The number limits are set, and then the
keyboard is illuminated and the keyboard can be used to edit the number (within the limits).
The number can be accepted (check key) or cancelled (x key) which reverts to the original
number. The cursor is then cleared, and the keypad is turned off. This example program then
delays 1 second before starting over as an example, but a real program could then display the
next information to be edited before starting a routine.
The subroutines are all documented within the program

