Application Note:QCI-AN048 Quicksilver controls, Inc.

Date: 4 March 2009 www.QuickSilverControls.com

Register Files

Related Documents:

Register Load and Store Example.qcp
Reg File Adv Example.txt

Reg File Adv Example - Include 2.txt
Reg File Adv Example - Include 3.txt
Reg File Adv Example - Include.csv
Reg File Adv Example.qcp

The document details the use of SilverLode's Register Files System. This is an advanced
topic. For general background please see the SilverLode User Manual.

Overview
Register data can be stored to and loaded from Non-Volatile Memory (NVM) using the
following command

NVM Commands
o Register Store Non-Volatile (RSN) — Store data from one register
¢ Register Store Multiple (RSM) — Store data from multiple registers
e Register Load Non-Volatile (RLN) - Load data from NVM to one register
e Register Load Multiple (RLM) - Load data from NVM to multiple registers

The following example shows RSN being used to store register 30 having a value of “1234” to
NVM. RLN is then used to load register 35 from non-volatile memory. At the end of the
program, register 35 equals “1234".

Program
R30=1234 NVM
R35=0
1234
RSN Rsg > 1234

RLN Rss 1234

Property of QuickSilver Controls, Inc. Page 1 of 14 This document is subject to change without notice.
QuickControl® is a registered trademark of QuickSilver Controls, Inc.
Other trade names cited are property of their explicit owner.

Application Note:QCI-AN048 Quicksilver controls, Inc.

NVM Access

The NVM Commands must specify a Location (address) in NVM where the data is stored. The
NVM Location can be specified by either the user (Native Mode) or by QuickControl (Normal
Mode).

Edit RSM:Reqgizter Store Multiple
Native Mode
The example to the right shows the RSM command in A Cancel |
. . . EGIEIETEI E N ETiE
Native Mode where the NVM Location is set to 1000 and = - —
registers 30 and 31 are being stored. In Native Mode, - _
the user is responsible for keeping track of where data is Bt Fizgitar Fis | B
: . e
being stored and making sure data does not overlap Select the Starting Regster *SeeD:crlintion "
other data or programs. User [30] [e
WARMIMG: MY M
Normal Mode Mumber of Registers c_:anbewr_itten tD'ISBnK
I2— B I times masimum.
In Normal Mode, QuickControl automatically determines o e e Lot Made
the NVM Location for all the NVM Commands at IHB_ i pesten © Nomal
download time using the register files. {5 Native

Register Files
A register file is a QuickControl object named by the user, which allows the user to specify the
number of registers to store and their initial data.

Register files allow NVM Commands to refer to a register file instead of an explicit NVM
Location. At download time, QuickControl automatically determines the best place in NVM to
store the register data and copies these NVM Locations to the appropriate NVM Commands
embedded in the user program.

Create a Register File Non-volatile Register File System
Register files are created from the menu Programs->Register
FI|eS Cancel |
Properties
The Non-Volatile Register File System dialog box displays a
list of all register files. For a new program this list is blank. Delete
Add Hlegister
To add a new Flie
Register File, press i
“Add Register File”. & Pgite Fes Impor.
" Register File Arrays H:EICISE::[ESSS
" Register File &ray Fows From Text File

QuickSilver Controls, Inc. Page 2 of 14

Application Note:QCI-AN048 Quicksilver controls, Inc.

. . Edit Register Fil
Enter a unique name for the file and the number of Em—
registers to store. In the example to the right, "My Reg
File" contains 2 registers. Registe Fil Mame Cancel |
IM_!,J Fieq File j Save |
The rest of the dialog box will be described latter. o
Murnber of FRegisters ﬂl
I2 — Delet
Press OK. J [pdee |
Mon-volatile Register File System Ao e
& futg ¢ Manual
o« || Your newly created , , Edi
el | | register file will now SR Initisization
ID l— Data
: appear on the list.
ty Reg File
Propertiez
Press OK.
Delete
{Add Hegister:
i File
— Digplay
& Reqister Files A I!'npor'E_.l
= Reqister File Amraps :ng:[a;:s
™ Redgister File &may Fows Fram Text File
Edit RSM:Register Store Multiple
Using A Register File ok |
With the register file “My Reg File” defined, the NVM Regster Fis Nare Cancel_|
Commands can now be used in Normal Mode without My Fleg File ~] Descption |
having to specify a NVM Location. o ,
Edit Reaister Filz | Indirect
™ Addreszing
Mode®

Let us use the RSM command with our new register file.
The RSM command shown here uses the register file “My
Reg File” to store registers 20 and 21 to NVM. Notice with

Select the Starting Register “See Deciption for

USEEE!

I User 3]

WOARMING: R Mem

[umten el FEgisters can be written to 100K

Normal Mode selected, the NVM Location and Number of I times masimum.
Registers controls are disabled. Remember, "My Reg P Maode
File" contains this information so it does not need to be o e & Noml
entered here by the user. e

In this dialog box, the user can change which registers are stored and choose different register
files.

For use of Indirect Addressing, see Application Note “QCI-AN046 Indirect Addressing”.

QuickSilver Controls, Inc. Page 3 of 14

Application Note:QCI-AN048 Quicksilver controls, Inc.

. ZREM iALM and RSH Example
Re.glslter Load and Store Example.'qcp Fegister L_oad N_u:un-'\-"nlatile:
This example program demonstrates storing and FRLN e g Hater Storage
loading data from a single register. The program loads |, - Add1 to _
register 10 from NVM, increments it, and then stores H’i‘;f;;”;L”rfrfiniﬁl‘:
the data. If the Register Watch tool is used to monitor |sfsn Store "eoumulator 101"
. . . to Reqgister File "Accumulator Storage'
register Accumulator [10], you will note that it starts =END End Program
with a value of 10 and then increments every time
power is cycled x|
K |
The r(_eglster file “Accumulator Storage” properties can st Fil Name Cancel |
be edlted by . IAccumuIator Storage j Diezcription |
1) Double clicking on the RLN command. B
[Edi Fieaiter Fie 1 s
“ . . on Mod[:ﬁmg
2) PreSS Edlt Reg|Ster Flle Select the Starting Register Hote:)
oter “When wsing
Accumulator [10] | indirect addressing,
Murber of Fegistens - Ioacleﬂ o
 — Eddiess, (3o WHE]
Fegister File M Cancel | . : Mode
egister File Name NOte “Numbel’ Of M on-olatle Meman Losation & Nomal
I.t’-‘«ccumulat-:rStorage j Save | Registers” iS 1 |85535 —J Native
Mumber of Registers Rename |

[Delet= |

R Why does register 10 start with a value of 10?7 See
’7 ' Auto Manual below.

fanalatle temon Locstion _Edit
Initialization

. — Dai

QuickSilver Controls, Inc. Page 4 of 14

Application Note:QCI-AN048 Quicksilver controls, Inc.

Edit Register File Details]
From the above example, the register file "Accumulator

Storage" is shown on the right. gt e Concel_|

Register File Name IhccumulatorStorage j &l

Name of register file. Must be unique within this Number of Registers __Reneme |

Program File (QCP). [I/ _ Dol |

Number of Registers (Memjf N

Number of registers to store or load. Max 10. e M

[mrfalatle beman Lacation . .E.dit .
Initialization

Memory Mode E) Data

When Auto Memory Mode is selected (default),
QuickControl assigns the register file’s NVM Location during program download. Manual
Memory Mode allows the user to specify the register file’s NVM Location.

Non-Volatile Memory Location x|
The register file will be store at this location. Note, in
Auto mode this is field is disabled. Corcel_|

Edit initial data for Register File Accumulator Storage

Edit Initialization Data — e

At download time, QuickControl initializes the data at 7 BT —
the register file’s NVM Location to the value entered

into the Edit Register File Initial Data dialog box. In the
above example, press "Edit Initialization Data" to get the
dialog box on the right. Note the Initial Data is 10. This
is why the example program always resets to 10 when
the program is downloaded.

Double click on the Units cell to change the units.

Register File Array

A Register File Array is simply a collection of register files. Each entry (row) into the array is
actually a register file. The number of registers (columns) for each row of the array must be
the same. Register File Array creation is described below. Use of Register File Arrays is
detailed in Application Note “QCI-AN046 Indirect Addressing”.

QuickSilver Controls, Inc. Page 5 of 14

Application Note:QCI-AN048 Quicksilver controls, Inc.

Import Register Files From Text File
Register files can be defined as detailed above or in a

specially formatted text file (defined below). This “Import Text Aonutatle Redhter fe S =
File” must be "linked" to the program file (qcp file) and saved _ o |
in the same folder. The following procedure describes the Cancel |
linking of the Import Text File to a QCP:
Properties
From the Programs menu, click on register files to get the
Non-Volatile Register File System dialog box as shown. pekte
Add Hlegister
Press “Import Register Files and Arrays From Text File”. =
x| i Sy
" Register File Anays and Amays
" Reugister File Aray Rows Froll:_nﬂ;ext
—

—ONE TIME IMPORT
'Ore Time Impart’ will impart the Register Files and/or Register File YOU have the Opt|0n Of elther d0|ng aone t|me |mp0rt

A f he sel d fil . The Register Fil d/! H H T H H
Aot seciieass Trefoguerlesda | or linking the Import Text file. Linking makes
QuickControl import the text file each time the QCP is
Select File to Impoltl downloaded .
— LIMK . .
If Link" iz checked, the Register Files and/or Register File Arayps NOte’ the |mp0r'[TeXt Flle needS to be in the Same
will be imparted fram the selected file on every davload of f0|der as the QCP

[Lirk fil to program at dowsload

o Check “Delete existing....” to delete any previously
| _SckeotFletoLink imported Register File Arrays before importing the file.

H::te: The Selected File needs to be in the zame Directom as By defaUIt, Importlng WI” Overwrite anyObJeCtS Wlth the
: same name, but will not delete any register files that
[Delete existing Register File &rays before Importing File. are no |0nger deﬂned in the teXt f||e

NOTE: If the text file will import any data associated with units (see Data Format Directive), the
QCP must have the appropriate scaling set and saved BEFORE the text file is linked.

QuickSilver Controls, Inc. Page 6 of 14

Application Note:QCI-AN048 Quicksilver controls, Inc.

Import Text File Format

Overview
"Reg File Adv Example.qcp" associated text files are a good example of Import Text Files.

An integral feature of the Register File System is its ability to dynamically link text files
containing data to a QCP file that uses the data. These text files must reside in the same
Windows folder as the QCP file that calls upon them. In addition, the text files must be
formatted in such a way that allows QuickControl to read the data and reallocate it to non-
volatile memory. This is achieved through Import Directives.

Comments

Any line preceded with a semi-colon is considered a comment and is ignored.
Example:

; Comment

Directives
The following formats are used to specify the Register File Import Directives.

File Include(@Include)
An @Include may be placed anywhere in the file and incorporates the listed file name as if it
were part of this file.

Example: @Include: Position Data File.txt

Register File Import Directive @NVRegFile:
This directive informs QuickControl that a register file is to be imported.

Example: @NVRegFile: startAdr=2500,colOFmt=time

There are two optional directives that may appear with the Register File Import directive,
Starting Address and Data Format. If these directives are used, they need to be on the same
line as the Register File Import Directive and must be separated by commas.

Starting Address Directive startAdr=
This directive specifies the non-volatile memory address of the register file. The starting
address may be in decimal or hexadecimal form.

Example: startAdr=2500

If the starting address is not specified with this directive, the register file starting address will be
set to the default Auto memory mode. In Auto memory mode, QuickControl assigns the
register file starting address when the QCP is downloaded.

Data Format Directive colXFmt=

This directive specifies the format of imported data. When using this directive ensure that
proper scaling is defined in the QCP file and saved BEFORE linking the text file to the QCP.
The following data formats are accepted:

QuickSilver Controls, Inc. Page 7 of 14

Application Note:QCI-AN048 Quicksilver controls, Inc.

long (imports data as a 32 bit signed value)

hex (imports data as a hexadecimal value)

uLong (imports data as a 32 bit unsigned value)

pos (scales value and imports with position units set in QuickControl Scaling)
acc (scales value and imports with acceleration units set in QuickControl Scaling)
vel (scales value and imports with velocity units set in QuickControl Scaling)

time (number of servo ticks [120 usec=1 tick])

torq (percent torque)

The data format for each data entry (column) can be different. Putting the appropriate number
in place of the X in the Data Format Directive specifies the data format of a specific data entry
(column). Note the column numbers are zero-based (i.e. 0,1,2...), so that the first column’s
column number would be 0.

Example: colOFmt=time (the format for the first column of data is time)

This data format directive will cause the first data entry of each register file that follows to be
imported in time format. QuickControl will convert the time data to Native SilverLode Units.
The data will be stored to memory in Native SilverLode Units.

Note: If the data format for an entry (column) is not specified with a directive, it defaults to long
format.

Example: @NVRegFile: startAdr=2500,colOFmt=time

(Using Register File Import Directive and both optional directives)

The register file data that follows this directive will be stored to non-volatile memory location
2500, and the first data entry (column) will be in time format.

Register File Details

The lines in the import text file following the Register File Directive should include details
(name, # of registers, and data) for specific register files. There can be multiple register files
imported, but the details of each register file must be contained on one line of the text file. The
register file details must be separated by commas and listed in the following format:

<reg file name>, <# of registers>, <1°' reg data>, <2" reg data>, ... <last reg data>

<reg file name> = Name of importing register file. Quotation marks are optional and spaces
allowed.

<# of registers> = The number of registers to be stored in this register file. Range must be 1
to 10.

<1°! reg data>, <2" reg data>, ... <last reg data> = The 32 bit data entries that are to be
stored in this register file. The number of data entries should match the number of registers for
this register file. Commas must separate the data entries.

Example: Reg File 1, 2, 100,110
This would define a register file named “Reg File 1” that has 2 registers with data 100 and 110.

Example: @NVRegFile: startAdr=2500, colOFmt=time, col2Fmt=pos, col4Fmt=vel
QuickSilver Controls, Inc. Page 8 of 14

Application Note:QCI-AN048 Quicksilver controls, Inc.

Reg File 1, 2, 100, 110
Reg File 2, 6, 30,31,32,33,34,35

If an imported text file contained the above example, it would create two register files named
“‘Reg File 17 and “Reg File 2”. Reg File 1 would start at memory location 2500 and Reg File 2
would start at memory location 2506. After importing, non-volatile memory starting at address
2500 is be configured as follows:

Memory # of words | Stored Elements
Address
2500 1 5 (length - lower byte), 78 (checksum - upper byte)
2501 1 0
2502 2 833 (time data stored in native units)
2504 2 110
2506 1 13 (length - lower byte), 199 (checksum - upper byte)
2507 1 0
2508 2 250 (time data stored in native units)
2510 2 31
2512 2 32
2514 2 33
2516 2 273804 (velocity data stored in native units)
2518 2 35

Register File Details Alternative

An alternative to the format detailed above for importing Register File Details requires putting
all of the information for the register file on the same line as the Register File Import Directive.
The Register File Import Directive (@QNVRegFile:) may be followed with the optional directives
for starting address (startAdr=xxxx) and data format (colXFmt=format) as described above. In
addition, the Register File Details may be supplied on the same line, using the following
directives separated by commas.

Register File Name Directive name=
Specifies the name of the register file

Example: name=reg file 1

Number of registers Directive numRegs=
Specifies the number of registers in this register file and must be a number between 1 and 10.

Example: numRegs=4
Data Directive data=
This is an optional parameter if followed by data and must be the last directive. It specifies the
32-bit data to be stored to non-volatile memory. The data is to be enclosed in parenthesis and
separated by commas.

Example: data=(300,301,302,303)

QuickSilver Controls, Inc. Page 9 of 14

Application Note:QCI-AN048 Quicksilver controls, Inc.

If a data directive is not given and the number of registers is defined, QuickControl will allocate
memory for the register file, but will not save any data to memory.

Example: @NVRegFile: name=reg file 1, numRegs=3

If an imported text file contained the above example, it would create a register file named “reg
file 17. This register file would be assigned a non-volatile memory location by QuickControl,
but that memory location would not be written to at program download.

The following examples use the above directives:

@NVRegFile: name=req file 1, numRegs=3,startAdr=2800, colOFmt=time,
data=(300,301,302)

If an imported text file contained the above example, it would create a register file
named “reg file 17, which would be stored to non-volatile memory location 2800 as

follows:
ng;:g wir?;s Stored Elements
2800 1 7 (length - lower byte), 215 (checksum -
2801 1 0
2803 2 2499 (time data stored in native units)
2805 2 301
2807 2 302

@NVRegFile: name=req file 1, data=(300,301,302)

If an imported text file contained the above example, it would create a register file
named “reg file 17, stored to a non-volatile memory location assigned by QuickControl at
program download.

Memory # of words | Stored Elements
Address
X 1 7 (length - lower byte), 118 (checksum -
X+1 1 0
x+3 2 300
x+5 2 301
xX+7 2 302

QuickSilver Controls, Inc. Page 10 of 14

Application Note:QCI-AN048

Quicksilver controls, Inc.

Register File Array Import Directives
Import directives for Register File Arrays are very
similar to those used with register files. Shown
on the right is “Reg File Adv Example.txt”. This
example is found in the “Data Registers” folder,
within the “QCI Examples” directory and is used
with “Reg File Adv Example.qcp”. The text file
shown, illustrates the register file and Register
File Array formatting techniques.

Register File Array Import Directive
@NVRegArray:

This directive informs QuickControl that a
Register File Array is to be imported.

The following directives define the Register File
Array. They need to be on the same line as the
Register File Array Import directive and must be
separated by commas.

Register File Array Name Directive name=
Specifies the name of the Register File Array to
be imported. Quotation marks optional and
spaces allowed.

Example: name=reg file array 1

Number of Columns Directive col=
Specifies the number of columns in the Register
File Array to be imported. The number of
columns can be equated to the number of
registers in each row of the Register File Array.
Data must be between 1 and 10.

Example: col=4

This directive is optional unless using the ending
address directive.

Number of Rows Directive row=
Specifies the number of rows in the Register File
Array to be imported.

Example: row=6

This directive is optional unless using the ending
address directive.

QuickSilver Controls, Inc.

FJ Reqg File Adv Example - Notepad
File Edit Format Help

~=1al =]

3 Mon-wolatiwve Register File
H

3 @NvRegFile:name=<reg file name>, numRegs=<num of reg
1-10>, <<data=(regl data, reg2 data,..., regh datals»
i MNOTE:
H quotes around Reg file name are optional
initial data is 0pt1ona1
@NVRegF11e names="My R
File",numregs=4, data= (300 301,302,303)

; Mon-wvolatile Register File array

H

;o ENVREgArTay:

i hame:Array Name

3 Mumber of rows and cols is automatically determined

anvRegarray: name="profilel”
1000, 0,3000,4000
1001,1,3001,4001
1002,0,3002,4002
1003,1,3003,4003
1004,0,3004,4004
1005,1, 3005,4005
1006, 0,30056,4006
1007,1,3007,4007
1008, 0,3008,4008
1008,1,3009,4000

anvRegFile:
profileinterval,l, 8333

; Include other file
@NVRegArray name=profilez, row=8, col=
@Include: "Reg File adv Examp1e - Inc1ude csv"

; quotation marks are optional
; Extra commas are ignored

@nviRegrile:

reg file 1,2,100,101

"reg file 2",3,2147483647, 21474583646, 21474583645
anvRegFile: startadr= 2000

"reg file 3",4,300,301, 302,303

reg file 4,3,400,401,402

@nvRegrile:

reg file 5,10, 500,501, 502, 503, 504, 505, 506, 507, 508, 509
@nvRegFEile: startadr=0x3FF

reg file 6,1, 600,

@Include: "Reg File adv Example - Include 2.txt"
@nvREDArray: name="profiles”

1000

@nvRegarray: name="profile?", row=2, col=2

1000, -122

-1000,122

; Mumber of Rows and Cols automatically calculated
anvRegarray: name="profiles”

11,12,13,14

21,22,23,24

51,32,33,34

41,42,45,44

; The following will dimport a non-wvolatile register
file named 'reqg file df'.
3 The data for each column (register) will be in a
different data format.
; The data format s not specified for the 7th column,
it will he set to the default "lon
; note: the column (register) numgers are zero-based
(i.e. 0,1,2, ...
; note: when using the Data Format Directiwve
CcolxFmt=) with units scaled by quickControl (e.g.
pos, vel, acc), the gcP file must have the scaling set
BEFCRE importing the register file! Reg File Adv
Example.gcp has scaling set to 4000counts=lrewv,
therefore values associated with scaled units are as
follows:

pos in revs

wvel in rps

acc in rps/s

|

anvRegFile:colOFmt=hex, co11Fmt uLDng col2Fmt=pos, col3F
mt=acc, coldFmt=vel, col5emt=ti

reg file df,7,100,101, 60000, 20000,100000,105,106

i Reserve memory for an array ending at 3000 but do
note initialize it

ENVRegArray: name=profiled, row=3,col=2, endadr=3000

; Reserve memory for an array starting at 2900 but do

not initailizae it.
ERVREGAr Ay

Page 11 of 14

name=profileld, row=3, col=2,startadr=2%00 _ |

-

-

Application Note:QCI-AN048 Quicksilver controls, Inc.

Starting Address Directive startAdr=
This directive specifies the non-volatile memory starting address of the Register File Array.
The starting address may be in decimal or hexadecimal form.

Example: startAdr=2500

Ending Address Directive endAdr=

This directive specifies the non-volatile memory ending address of the Register File Array.
The ending address may be in decimal or hexadecimal form. QuickControl will calculate the
starting address for this Register File Array based on the given ending address. QuickControl
needs to know the number of rows and columns to find the starting address, therefore the
number of rows and columns must be specified before this directive.

Example: endAdr=3000

If neither the starting address nor the ending address is specified, the Register File Array
starting address will be set to the default Auto memory mode. In Auto memory mode,
QuickControl assigns the Register File Array starting address when the QCP is downloaded.

Data Format Directive colXFmt=
This directive specifies the format of the imported data. When using this directive, ensure that
proper scaling is defined in the QCP file and saved BEFORE linking the text file to the QCP.
The following data formats are accepted:
e Jong (imports data as a 32 bit signed value)
hex (imports data as a hexadecimal value)
uLong (imports data as a 32 bit unsigned value)
pos (scales value and imports with position units set in QuickControl Scaling)
acc (scales value and imports with acceleration units set in QuickControl Scaling)
vel (scales value and imports with velocity units set in QuickControl Scaling)
time (number of servo ticks [120 usec=1 tick])

The data format for each column can be different. Putting the appropriate number in place of
the X in the Data Format Directive specifies the data format of a specific column. Note the
column numbers are zero-based (i.e. 0,1,2...), so that the first column’s column number would
be 0.

Example: colOFmt=time (the first column’s data format is time)

This data format directive will cause the first column of each Register File Array entry that
follows to be imported in time format. QuickControl will convert the time data to Native
SilverLode Units. The data will be stored to memory in Native SilverLode Units.

If the data format for a column is not specified with a directive, it will be set to the default long
format.

Example: @NVRegArray: name=req file array 1, col=4, row=6, startAdr=2500, colOFmt=time

QuickSilver Controls, Inc. Page 12 of 14

Application Note:QCI-AN048 Quicksilver controls, Inc.

The Register File Array data that follows this directive will be stored to non-volatile memory
location 2500, and the column will be in time format. There will be 6 entries in this array, and
each entry has 4 columns.

Register File Array Details

The lines in the imported text file following the Register File Array Import Directive should
include the 32-bit data for the Register File Array defined by the directive. The data of each
Register File Array row must be contained on one line of the text file. The data must be
separated by commas and listed in the following format:

<row 1: 1st reg data>, < row 1: 2nd reg data ... <row 1: last reg data >

<row 2: 1st reg data>, < row 2: 2nd reg data ... < row 2: last reg data >

<last row: 1st reg data>, <last row: 2nd reg data ... < last row: last reg data >

If there is no Register File Array data and the rows and columns are defined, QuickControl will
define the array and allocate memory for it, but will not write to memory.

Example: @NVRegArray: name=req file array 1, col=4, row=3, startAdr=2600, colOFmt=time
100,110,120,130
200,210,220,230
300,310,320,330

If an imported text file contained the above example, it would create a Register File Array
named “reg file array 1”. The first row of this array would start at memory location 2600
followed in memory by the other rows of the array. After the import, non-volatile memory
starting with address 2600 would be configured as follows:

AM:(TOW # of words | Stored Elements
ress

2600 1 9 length of reg file array 1 (first row)
84 checksum of reg file array 1(first row)

2601 1 0

2602 2 100 (time data stored in native units)

2604 2 110

2606 2 120

2608 2 130

2610 1 9 length of reg file array 1 (second row)
228 checksum of reg file array 1(second row)

2611 1 0

2612 2 200 (time data stored in native units)

2614 2 210

2616 2 220

2618 2 230

2620 1 9 length of reg file array 1 (third row)
113 checksum of reg file array 1(third row)

2621 1 0

2622 2 300 (time data stored in native units)

2624 2 310

2626 2 320

2628 2 330

QuickSilver Controls, Inc. Page 13 of 14

Application Note:QCI-AN048 Quicksilver controls, Inc.

Register File Storage Details

The first memory address of the register file always contains the Length and Checksum of the
register file, which is automatically calculated and stored by the servo. The servo uses the
length and checksum when loading the register file to know the correct number of words to
load and to verify the accuracy of the data. The second word of the register file is a ‘0’ or ‘Null’
and is added by the servo. The Null word is a safety feature to prevent the servo from trying to
execute the data as a program. The data from the selected data registers is stored
sequentially into the third and subsequent words of the register file.

Register File Memory Usage Example (starting at address 2500)

Memory Address # of words Stored Elements

2500 1 Length (lower byte) Checksum (upper byte)
2501 1 Null Word (0)

2503 2 Data from 1% Register

2505 2 Data from 2™ Register

2507 2 Data from 3™ Register

2509 2 Data from 4™ Register

2511 2 Data from 5™ Register

2513 2 Data from 6" Register

2515 2 Data from 7" Register

From the example, the total memory usage is 16 words to describe data in 7 registers.

QuickSilver Controls, Inc. Page 14 of 14

